Artificial Neural Network Application for Flexible Pavement Thickness Modeling
نویسندگان
چکیده
Flexible pavements are affected by moving vehicles, climate and other environmental factors. As a result of these factors, the pavement starts to deteriorate. In order to prevent further deterioration, a maintenance program should be carried out at right time and right places. For the determination of the structural carrying capacity of the pavement, non-destructive testing equipments are used. These are mainly Benkelman Beam, dynaflect, road rater and falling weight deflectometer (FWD). In such a process, the most important thing is to analyze the collected data. A backcalculation procedure is carried out for back-calculating the elastic modulus for each layer that has an effect on the pavement life. Generally, linear elastic and finite element based programs are used for backcalculation, but they are time consuming. An artificial neural network (ANN) approach is used for the elimination of this drawback during the course of this study. Results indicate that the ANN can be used for backcalculation of the thickness of layers with great improvement and accuracy.
منابع مشابه
Application of Artificial Neural Networks for Analysis of Flexible Pavements under Static Loading of Standard Axle
In this study, an artificial neural network was developed in order to analyze flexible pavement structure and determine its critical responses under the influence of standard axle loading. In doing so, more than 10000 four-layered flexible pavement sections composed of asphalt concrete layer, base layer, subbase layer, and subgrade soil were analyzed under the impact of standard axle loading. P...
متن کاملModeling of Resilient Modulus of Asphalt Concrete Containing Reclaimed Asphalt Pavement using Feed-Forward and Generalized Regression Neural Networks
Reclaimed asphalt pavement (RAP) is one of the waste materials that highway agencies promote to use in new construction or rehabilitation of highways pavement. Since the use of RAP can affect the resilient modulus and other structural properties of flexible pavement layers, this paper aims to employ two different artificial neural network (ANN) models for modeling and evaluating the effects of ...
متن کاملDevelopment of An Artificial Neural Network Model for Asphalt Pavement Deterioration Using LTPP Data
Deterioration models are important and essential part of any Pavement Management System (PMS). These models are used to predict future pavement situation based on existence condition, parameters causing deterioration and implications of various maintenance and rehabilitation policies on pavement. The majority of these models are based on roughness which is one of the most important indices in p...
متن کاملDetermining the Relative Importance of Parameters Affecting Concrete Pavement Thickness
Spending costs in construction of road pavements has turned this subject into one of the significant points in transportation infrastructure of countries. Concrete slabs consider as a paving method with ability of reducing the rehabilitation needs. Therefore, to manage costs and optimize the thickness of concrete pavements, recognizing the amount of determinative factors’ influence will be requ...
متن کاملArtificial neural network approach for overlay design of flexible pavements
Pavements are constructed to deteriorate because of many factors such as traffic loading, material related factors, climate, and other environmental factors. In order to preserve these investments, a maintenance program should be carried out at right time and right places. One of the most important maintenance activities is asphalt overlays. Designing an overlay is more challenging since it res...
متن کامل